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Abstract

Model-free analysis of NMR relaxation data, which is widely used for the study of protein dynamics, consists of the
separation of the global rotational diffusion from internal motions relative to the diffusion frame and the description
of these internal motions by amplitude and timescale. Five model-free models exist, each of which describes a
different type of motion. Model-free analysis requires the selection of the model which best describes the dynamics
of the NH bond. It will be demonstrated that the model selection technique currently used has two significant
flaws, under-fitting, and not selecting a model when one ought to be selected. Under-fitting breaks the principle of
parsimony causing bias in the final model-free results, visible as an overestimation of S2 and an underestimation
of τe and Rex . As a consequence the protein falsely appears to be more rigid than it actually is. Model selection
has been extensively developed in other fields. The techniques known as Akaike’s Information Criteria (AIC),
small sample size corrected AIC (AICc), Bayesian Information Criteria (BIC), bootstrap methods, and cross-
validation will be compared to the currently used technique. To analyse the variety of techniques, synthetic noisy
data covering all model-free motions was created. The data consists of two types of three-dimensional grid, the Rex
grids covering single motions with chemical exchange {S2, τe, Rex }, and the Double Motion grids covering two
internal motions {S2

f , S2
s , τs}. The conclusion of the comparison is that for accurate model-free results, AIC model

selection is essential. As the method neither under, nor over-fits, AIC is the best tool for applying Occam’s razor
and has the additional benefits of simplifying and speeding up model-free analysis.

Abbreviations: AIC – Akaike’s Information Criteria; AICc – small sample size corrected AIC; BIC – Bayesian
Information Criteria; CSA – chemical shift anisotropy; NOE – nuclear Overhauser effect; pdf – probability
distribution function.

Introduction

The study of NMR relaxation data is the richest source
of experimental information on protein dynamics and
can reveal details on an atomic level. By analysis of the
backbone amide nitrogen relaxation, a global picture
of the dynamics of a protein can be revealed. Standard
analysis consists of the measurement of three relax-
ation values per magnetic field strength, the {1H}-15N
steady-state NOE, and the 15N R1 and R2 relax-
ation rates. The significance of these rates is revealed
through model-free theory. Two distinct components
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influence the relaxation values - the global rotational
diffusion of the protein and internal motions of the NH
bond vector relative to the rotational diffusion frame.
Model-free theory separates these two components as
well as describes the internal motion by amplitude and
timescale. The original model-free theory (Lipari and
Szabo, 1982a, b) describes a single internal motion
using the two parameters S2 and τe, where S2 is the
square of the generalised order parameter reflecting
the amplitude of motion, and τe is the effective cor-
relation time reflecting the picosecond to nanosecond
timescale of the motion. S2 will be referred to as the
order parameter and τe as the correlation time. The
theory was extended to include internal motions on
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two timescales with the faster of these described by
the parameters S2

f and τf , and the slower by S2
s and

τs (Clore et al., 1990). An additional term used in
model-free analysis is Rex which is included to ac-
count for the relaxation due to chemical exchange and
is an indicator of motions on micro to millisecond
timescales. Five model-free models describing differ-
ent types of motion are constructed through various
combinations of the model-free parameters. These are
model 1 {S2}, model 2 {S2, τe}, model 3 {S2, Rex},
model 4 {S2, τe, Rex}, and model 5 {S2

f , S2
s , τs}. Each

type of relaxation value is described by different com-
binations of spectral density values at five frequencies
(Abragham, 1961), and in turn, the model-free equa-
tions describe these spectral densities in terms of the
model-free parameters (Lipari and Szabo, 1982a, b;
Clore et al., 1990). Model-free analysis consists of fit-
ting the relaxation data by χ2 minimisation, using the
model-free and relaxation equations. The fitting is re-
peated five times, once for each of the five model-free
models.

The problem addressed in this paper is which of
the five model-free models should be selected to de-
scribe the internal motion of the NH bond. The current
model-free model selection technique (Mandel et al.,
1995), which is almost universally used in model-free
analysis, is based on hypothesis testing using chi-
squared and F-tests. An older technique (Farrow et al.,
1994), a set of rules based on the fitted values of the
model-free parameters and their errors, will also be ex-
amined. The study of model selection is an important
field in statistics which has been extensively devel-
oped for use in a broad variety of disciplines (Linhart
and Zucchini, 1986; Burnham and Anderson, 1998;
Zucchini, 2000). Three major categories of model se-
lection include hypothesis testing, Bayesian methods,
and frequentist methods. Traditional hypothesis test-
ing can be classed into the step-up, step-down, or
step-wise methods, with the current model-free tech-
nique (Mandel et al., 1995) classified as a highly mod-
ified step-up procedure. The use of hypothesis testing
for model selection has many shortcomings (Burnham
and Anderson, 1998), the major concern being signif-
icance levels or α-levels for the tests. As the variance
of a model increases with the number of parameters,
due to more noise being reflected in the model, the
α-levels should be adjusted for both the sample size
and parameter number yet no rules exist for the selec-
tion of correct α-levels. Due to the arbitrary choice of
constant α-levels the current model selection is incon-
sistent, as different α-levels lead to different selection

results. In addition, different models will be selected
depending whether step-up, step-down, or step-wise
testing is used. Importantly, hypothesis testing cannot
be used for non-nested models. For model-free analy-
sis this is testing between model-free models 2 and
3, 3 and 5, and 4 and 5. The adequacy of the cur-
rent model-free model selection has previously been
called into question but no solution has been put into
practice (Korzhnev et al., 1997; Jin et al., 1998; An-
drec et al., 1999). Bayesian statistical methods have
been applied to the analysis of NMR relaxation data
as a means of determining both the global rotational
diffusion parameters (Andrec et al., 2000) and the
model-free parameters (Andrec et al., 1999). As of
yet, Bayesian statistics have not been implemented
as a tool for model-free model selection although the
methodology has been proposed (Jin et al., 1998).

Central to many of the frequentist techniques is
the concept of parsimony, which states that the sim-
plest model which fits well should be used to describe
the data (Burnham and Anderson, 1998). The princi-
ple of parsimony is a manifestation of Occam’s razor
and is the balance between bias and variance. Bias
is a distortion of the results due to oversimplification
while variance is the incorporation of more experi-
mental noise into the final model. Generally, as the
number of parameters in the model increases, bias will
decrease and variance will increase. Therefore, in the
selection of a biased model, under-fitting results in an
overestimation of precision due to the low variance.
Over-fitting increases the variance in the final model-
free results. The best balance is achieved by selection
of the model with the lowest value of a quantity known
as the expected discrepancy (Zucchini, 2000). Un-
fortunately this can never be calculated for real data
but can be estimated using another value termed a
criterion. All the advanced techniques studied in this
paper consist of the calculation of five criteria, one for
each model-free model, and the selection of the model
with the lowest criterion. The frequentist methods of
AIC or Akaike’s Information Criteria (Akaike, 1973),
AICc or small sample size corrected AIC (Hurvich
and Tsai, 1989), bootstrap model selection (Lindhart
and Zucchini, 1986), and cross-validation (Lindhart
and Zucchini, 1986), as well as the Bayesian method
BIC, Bayesian Information Criteria or Schwarz Cri-
teria (Schwarz, 1978), will be applied to model-free
analysis and a comparison of various model selection
techniques presented.
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Theory and methods

Model selection theory for NMR relaxation

For a single nucleus four different types of relaxation
data sets exist, the true set Rtrue, the sample set R,
the true back calculated set Rtrue(θ), and the back
calculated set R(θ). A relaxation data set is defined
as the collection of all the relaxation values for a sin-
gle nucleus and θ is the vector whose elements are
the model-free parameters. The true set is the true re-
laxation data underlying the measured data, but can
never be observed due to noise. The sample set is the
experimentally available or measured relaxation data
set and is the true set plus noise. The true back cal-
culated and back calculated sets are determined from
the model-free parameters which are fitted using the
true or sample sets respectively. The differences be-
tween the five model-free models are reflected in the
two back calculated sets while the true and sample sets
remain constant. For each of the four data sets there
is a corresponding error set with the same dimension.
By assuming gaussian errors the data and error sets
together describe a set of normal probability distribu-
tion functions (pdfs) with one normal pdf for each data
point. It is assumed that all four error sets are identi-
cal and therefore the one error set (σ) will be used in
association with all four data sets.

The method of maximum likelihood is used to
find the best fit model-free parameter values for each
model-free model. By assuming gaussian errors a
maximum likelihood estimate of the parameters is
found by chi-squared minimisation, where the chi-
squared statistic is defined as

χ2 =
n∑

i=1

(Ri − Ri(θ))
2

σ2
i

. (1)

n is the dimension of the sets, Ri are the data points
of the sample set R, Ri(θ) are the data points of
the back calculated set R(θ), and σi are the values
from the error set σ. After minimisation, the model-
free parameter vector is denoted by the symbol θ̂.
An alternative chi-squared statistic, labelled the true
chi-squared statistic, is defined as

χ2
t rue =

n∑
i=1

(Rtrue
i − Ri(θ))

2

σ2
i

. (2)

Rtrue
i are the data points of the true set Rtrue.

Central to the frequentist model selection tech-
niques is the concept of discrepancies. A discrepancy

is represented by the symbol �, and can be any mea-
sure for lack of fit. The discrepancy chosen for this
work is the common Kullback–Liebler discrepancy,
�K−L (Kullback and Leibler, 1951), which is associ-
ated with the concept of likelihood and is a statistical
measure of the distance between the probability distri-
bution functions of the true set and the back calculated
set. The model with the lowest discrepancy is there-
fore defined as the model which best describes the true
relaxation data set. Four variations of the Kullback–
Liebler discrepancy are the realised discrepancy (�),
the expected discrepancy (E�), the empirical discrep-
ancy (�n), and the expected empirical discrepancy
(E�n). The realised discrepancy, or simply the dis-
crepancy for a given sample, is between the true set
(Rtrue) and the back calculated set (R(θ)). As dif-
ferent measurements will result in different sample
sets, and as the true set is constant, the discrepancy
varies due to the dependence of the back calculated
set on the sample set. The discrepancy is therefore a
random variable, and its average value is known as
the expected discrepancy. The expected discrepancy
is independent of the errors in the sample set and is
fundamental to the derivation of the frequentist model
selection techniques. The empirical discrepancy is de-
fined as being between the sample set (R) and the
back calculated set (R(θ)). The expected empirical
discrepancy is defined as the mean value of the dis-
crepancies between back calculated sets, created by
randomisation of the sample set, and the sample set
and is a natural estimator of the expected discrepancy.
Two additional classes of the Kullback–Liebler dis-
crepancy are the discrepancy due to approximation,
defined as being between Rtrue and Rtrue(θ), and
the discrepancy due to estimation, defined as being
between Rtrue(θ) and R(θ).

The empirical Kullback–Liebler discrepancy, �n,
is related to the likelihood formula where the like-
lihood for a given model-free model is represented
by L(θ) and the log-likelihood by l(θ). θ is the k-
dimensional model-free parameter vector, and n is
the dimension of the data set. The formula for the
empirical discrepancy is

�n = − 1

n
l(θ̂) (3)

and the likelihood for a relaxation data sample set is

L(θ) ≡ L(θ|R) =
n∏

i=1

L(θ|Ri). (4)

L(θ|R) is the likelihood of the model-free parameter
vector θ given the sample set R, and L(θ|Ri ) is the
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likelihood of the model-free parameter vector θ given
the sample data point Ri . Fundamental to likelihood
theory is the relationship (Edwards, 1972)

L(θ|Ri) ∝ P(Ri |θ). (5)

P(Ri |θ) is the probability of the sample data point
Ri given the model-free parameter vector θ. The dif-
ference between likelihood and probability is that in
probability, Ri is variable and θ is constant, while in
likelihood, Ri is constant and θ is variable. Because
the constant of proportionality is invariant between the
model-free models, it can be ignored. By assuming
gaussian errors for each relaxation data point in the
set, the likelihood for a single data point is given by
the equation

L(θ|Ri) = 1√
2πσi

e
− (Ri−R(θ))2

2σ2
i . (6)

By combining Equations 1, 4, 5, and 6, the likelihood
is therefore

L(θ) =
n∏

i=1

1√
2πσi

e
− (Ri−R(θ))2

2σ2
i , (7)

L(θ) =
(

1√
2π

)n
(

n∏
i=1

1

σi

)
e
−

n∑
i=1

(Ri−R(θ))2

2σ2
i , (8)

L(θ) =
(

1√
2π

)n
(

n∏
i=1

1

σi

)
e− χ2

2 . (9)

The log-likelihood is the natural logarithm of the
likelihood and is therefore

l(θ) = ln(2π)−
n
2 + ln

(
n∏

i=1

1

σi

)
− χ2

2
, (10)

l(θ) = −n

2
ln 2π −

n∑
i=1

ln σi − χ2

2
. (11)

Because the first two terms of the log-likelihood are
constant under all models, the log-likelihood can be
simplified to

l(θ) = −χ2

2
. (12)

By combining Equations 3 and 12 the empirical dis-
crepancy is therefore

�n = χ2

2n
. (13)

L(θ)true and l(θ)true are the likelihood and log-
likelihood of the model-free parameter vector θ given
the true set. If L(θ), l(θ), and Ri are replaced with
L(θ)true, l(θ)true, and Rtrue

i in the derivation of the
log-likelihood the formula for the realised discrepancy
is

� = χ2
t rue

2n
. (14)

Importantly, the back calculated set is not replaced by
the true back calculated set, otherwise the discrepancy
due to approximation is derived rather than the realised
discrepancy. Because the factor of 2n is constant for
all model-free models, the realised discrepancy can be
simplified to the value of the true chi-squared statis-
tic. The simplest method for finding the value of the
expected discrepancy is by Monte Carlo simulations.
The realised discrepancy is calculated for x sample
sets, created by randomisation of the true set using the
error set and assuming gaussian errors, and the aver-
age of the x true chi-squared values is the expected
discrepancy.

In practice, the expected discrepancy can never be
calculated because the true set cannot be measured.
Therefore an estimator of the expected discrepancy
which uses only the sample set and back calculated set
is required, and is known as a criterion. All of the fre-
quentist model selection techniques used in this paper
attempt to estimate the expected discrepancy through
criteria, selecting the model with the lowest criterion
value. The AIC and AICc criteria belong to a class of
the frequentist model selection techniques known as
the asymptotic methods. When the derivation of the
expected discrepancy using only the sample and back
calculated sets is extremely complex, as with NMR
relaxation data, a simpler alternative is to derive the
asymptotic value of the expected discrepancy as the
sample size approaches infinity. AIC or Akaike’s In-
formation Criterion (Akaike, 1973) is the simplest of
all model selection techniques and is defined by the
formula

AIC

2n
= �n + k

n
. (15)

By substitution with Equation 13, the formula for
relaxation data is

AIC = χ2 + 2k. (16)

k is the number of model-free parameters in the model.
AICc is the small sample size corrected AIC (Hurvich
and Tsai, 1989) and is defined by

AICc

2n
= �n + k

n
+ k(k + 1)

n(n − k − 1)
(17)
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and by substitution with Equation 13, the criterion is

AICc = χ2 + 2k + 2k(k + 1)

n − k − 1
. (18)

n is the dimension of the relaxation data set. AICc is
simply AIC with an additional term used to compen-
sate for the size of the sample by causing under-fitting.
Analogous to the asymptotic methods is the Bayesian
Information Criteria or BIC, otherwise known as the
Schwarz Criteria (Schwarz, 1978). BIC is similar in
form to the asymptotic criteria but is derived inde-
pendently from within a Bayesian framework. The
defining formula is

BIC

2n
= �n + k ln n

2n
(19)

and by substitution with Equation 13, the criterion for
relaxation data is

BIC = χ2 + k ln n. (20)

The bootstrap criterion is another method for esti-
mating the expected discrepancy (Zucchini, 2000). If
the sample set is considered as the true set, the ex-
pected empirical discrepancy (E�n) can be used as
an estimator of the expected discrepancy (E�). The
sample set is randomised with gaussian noise using the
error set to create x new sample sets. The empirical
discrepancy is calculated for each randomised sample
set as the true chi-squared statistic, defined as being
between the original sample set which is equivalent
to the true set, and the back calculated set. The mean
value or expected empirical discrepancy over the x

data sets is the bootstrap criterion.
The cross-validation model selection technique

used in this paper is single-item-out cross-validation
(Zucchini, 2000). The sample set is split into two dif-
ferent sets, the validation set consisting of a single
data point Ri , and the calibration set consisting of the
remaining (n−1) data points. The model-free parame-
ters are fitted using the calibration set and then used to
compute the back calculated data point Ri(θ). The χ2

value between the validation set data point Ri and the
back calculated data point Ri(θ) is calculated. This is
repeated for every value of i and the average χ2 value
is the cross-validation criterion. Because models 4 and
5 contain three parameters cross-validation can only
be used on NMR relaxation data sets with n > 3, and
therefore single field strength data cannot be used.

To minimise the under-fitting of the model selec-
tion technique currently used for model-free analysis
(Mandel et al., 1995), high significance levels or α-
levels for the hypothesis testing were used. For the

chi-squared tests the level was set to 0.1, while for the
F-tests the level was set to 0.2. The high chi-squared
test is part of the flow diagram (Mandel et al., 1995)
between the tests for models 2 and 3 and the tests for
models 4 and 5. It checks the value of the chi-squared
statistic for model 1 and if below an arbitrary cut-off
value, model 1 is selected, otherwise the tests for mod-
els 4 and 5 are carried out. The chi-squared cut-off
value was set to 20. The current technique was only
designed for use on single field strength data (n = 3)
but because this analysis uses both single and double
field strength data, the method was extended for the
larger data sets by the addition of extra chi-squared
and F-tests (supplementary material). The original
method was retained for the single field strength data.
For the older model-free model selection technique the
model selection rules were followed exactly as stated
(Farrow et al., 1994).

Data analysis

By specifying the underlying motion of the NH bond
vector, the performance of the different model selec-
tion techniques can be compared. To test the various
methods two types of three-dimensional grid, labelled
the Rex grids and the Double Motion grids, were con-
structed to cover all model-free motions. The Rex grids
cover the motions represented by single model-free
motions with chemical exchange and have the three
dimensions S2, τe, and Rex . The Double Motion grids
cover the model-free space where there are two in-
ternal motions and have the dimensions S2

f , S2
s , and

τs . The values for the parameter dimensions were
non-linear, being concentrated at regions where the
distinction between the complex and the simpler para-
metrically restricted models are blurred by noise. This
occurs for high S2 values, and low τe and Rex values.
The values used for the order parameter dimensions
are S2, S2

s , S2
f = {0.001, 0.388, 0.582, 0.698, 0.776,

0.831, 0.873, 0.905, 0.931, 0.952, 0.970}. The values
for the correlation time dimensions in picoseconds are
τe, τs = {0.1, 0.5, 1, 2, 4, 8, 16, 32, 64, 128, 256,
512, 1024, 2048, 4096, 8192}. The values for the Rex

dimension at 600 MHz are Rex = {0, 0.149, 0.223,
0.332, 0.495, 0.739, 1.102, 1.644, 2.453, 3.660, 5.460,
8.145, 12.151, 18.127, 27.043}. The kinetic regime
was set to fast exchange and therefore the Rex values
were scaled quadratically for the 500 MHz data. This
quadratic field strength dependence may not be a valid
assumption for real data (Millet et al., 2000) but is
sufficient for the purposes of this analysis. Due to the
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range of parameter values some of the grid points of
the Rex and Double Motion grids will never be ob-
served in a real system. For the sake of completeness
these were not excluded. An extremely popular mis-
conception is that the range of correlation times for
single internal motions is limited to motions which are
in the extreme narrowing limit. While the extraction of
correlation times in the nanosecond timescales is less
accurate than picosecond correlation times (Lipari and
Szabo, 1982a), the only limit on the parameter is the
accuracy and quantity of the relaxation data (Jin et al.,
1998). For the extended model-free theory the only
limit on the correlation times is the separation of time
scales by a magnitude determined by the local curva-
ture of the model-free space which itself is dependent
on the relaxation data, experimental errors, and model-
free parameter values. After fitting, all model selection
techniques additionally increase the magnitude of sep-
aration of time scales which can be extracted from the
data by selecting simpler models. The total number of
grid points for each Rex grid and Double Motion grid
are 2640 and 1936, respectively.

The ideal model to be selected for the Rex grids is
model 4, but when either one or both of the τe and Rex

dimensions are considered insignificant because of the
noise, models 1, 2, and 3 are equally valid as these are
parametric restrictions of the full model. The model-
free parameter values for these simpler models are
correct if the dropped parameter is truly insignificant.
For the Double Motion grids the ideal model to be
selected is model 5, but when the two motions cannot
be distinguished, model 2 is a valid approximation. By
equating the fast and slow correlation times in the full
extended model-free correlation function (Clore et al.,
1990) the model 2 parameters are given by S2 ≡ S2

f S2
s

and τe ≡ τf ≡ τs and the extracted model-free pa-
rameters can still be interpreted. Model 2 is also a
parametric restriction of model 5 if either of the or-
der parameters is equal to one. If S2

f is equal to one,

S2 ≡ S2
s and τe ≡ τs , and if S2

s is equal to one,
S2 ≡ S2

f and τe ≡ τf . In addition to this, if the values
of the correlation times are insignificant, model 1 is
also valid as it is a parametric restriction of model 5
where S2 ≡ S2

f S2
s and τf = τs = 0.

Three perfect Rex grids and three perfect Double
Motion grids, consisting of noise-free relaxation val-
ues at either 500 MHz (n = 3), 600 MHz (n = 3), or
both 500 and 600 MHz (double field strength, n = 6),
were back calculated for each grid point. A schematic
describing the creation of all grids is presented in the

supplementary material. For the Rex grids the model 4
equations were used for the back calculation, for the
Double Motion grids the equations were those for
model 5. The diffusion tensor used in the back cal-
culation was isotropic with a correlation time of 10 ns.
The NH bond length was fixed to 1.02 Å, the chemi-
cal shift anisotropy fixed to −160 ppm, and the angle
between the principle axes of the chemical shift and
dipolar tensors assumed to be zero.

The error sets were chosen to reflect experimental
noise and consisted of the fixed values 0.04 for the
600 MHz NOE, 0.05 for the 500 MHz NOE, and 2%
for all R1 and R2 values. When the NOE is zero, the
corresponding error is at a minimum and equal to the
error from the saturated spectrum divided by the peak
intensity from the reference spectra. The exact NOE
error depends on the peak intensities and errors from
both saturated and reference spectra but, as this infor-
mation is no longer present in the NOE, fixed errors
were chosen as a balance between simplicity and accu-
racy. Each of the six perfect grids was randomised five
times with gaussian noise creating thirty random grids
represented by synthetic noisy relaxation data. Each
true set representing a single point from the perfect
grids and each sample set representing a single point
from the random grids were fit separately to models 1
to 5. The program utilised for the fitting procedure was
Modelfree 4.01 for Linux (Palmer et al., 1991; Mandel
et al., 1995). The various model selection techniques
were used to select the best model for each grid point.

For the Modelfree calculations an initial linear grid
search over the model-free parameters was carried out
before minimisation. Twenty increments were used
for each parameter dimension with the search from
0 to 1 for the order parameters, 0 to 10,000 ps for
the correlation times, and 0 to 20 s−1 for the Rex

values. Lower and upper bounds of 0 and 1 were
placed on the order parameters while the correlation
times and chemical exchange values were restricted to
positive values. The chi-squared statistic (Formula 1)
was used for model-free minimisation by setting the
Modelfree program variable ‘optimisation’ to ‘tval’.
The diffusion tensor was fixed to 10 ns isotropic tum-
bling and the NH bond length and CSA values were
set to the previously mentioned values. No trimming
of the Monte Carlo results was used. For the perfect
grids, which were used for the ideal model selec-
tion using the expected discrepancy, 500 Monte Carlo
simulations were performed. The Modelfree program
Monte Carlo variable ‘sim_type’ was set to ‘expr’
to randomise the original true set. For the random
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grids, which were used for AIC, AICc, and BIC, and
the current (Mandel et al., 1995) and older (Farrow
et al., 1994) model-free model selection techniques,
200 Monte Carlo simulations were performed. So
that the new sets would be created by randomisa-
tion of the back calculated set, ‘sim_type’ was set
to ‘pred’. These simulations were used to create the
chi-squared and F-distributions necessary for the hy-
pothesis tests. Separate model-free calculations were
required for the bootstrap and cross-validation model
selection techniques. For the bootstrap method the ran-
dom grids were used in combination with 500 Monte
Carlo simulations with ‘sim_type’ set to ‘expr’. For
the cross-validation method a model-free minimisa-
tion was carried out per single-item-out iteration and
no Monte Carlo simulations were used. The results
of model selection were visualised using the program
OpenDX 4.1.3 from IBM (http://www.opendx.org).

Results

The results are best summarised as the percentages of
the model-free models selected for each model selec-
tion technique. For the double field strength Rex and
Double Motion grids the results are shown in Tables 1
and 2, respectively, while for the single field strength
600 and 500 MHz Rex and Double Motion grids the
results are shown in Tables 3–6 in the supplementary
material. For a single table the percentages are the av-
erage of the 5 random grids, except for the expected
discrepancy which is obtained from the single perfect
grid. These percentages are specific to the synthetic
non-linear grids and can only be used for compari-
son of the performance of the various model selection
techniques.

A problem inherent in the tables is that even though
the percentages may appear reasonable a certain frac-
tion may actually correspond to incorrect model se-
lection where the parameter values of the fitted and
selected model are far from the true values specified in
the creation of the grids. By creating surfaces where
the height corresponds to the difference between the
final fitted and selected model-free parameter values
and the original true values, anomalies which are
present but invisible in the tables will result in a dis-
tortion of the surface. All problematic regions can be
uncovered by visual inspection of the surfaces. If a
parameter is not represented in the selected model,
it is assumed to be equal to one for order parame-
ters or zero for correlation times and relaxation due

to exchange. Because the dimensionality of the most
complex model used is three, a surface corresponding
to the difference in a single model-free parameter will
be four-dimensional. The fourth dimension, which is
set to the S2 and S2

s dimensions for the Rex and Dou-
ble Motion grids respectively, is split into a sequence
of eleven three-dimensional surfaces. A selection of
these plots is shown in Figures 1–3 while entire se-
quences are presented in the supplementary material.
These surfaces represent the results of the first ran-
domised grids. In these diagrams, a black sphere
(red in the supplementary material) represents a grid
point where no model is selected. For the Rex grid
surfaces, the S2 difference is set to zero when no
model is selected to enable the resolution of fine dif-
ferences between selection techniques by preventing
large distortions in the surface. For the Double Mo-
tion grid surfaces an additional sphere, which is white
and smaller (cyan in the supplementary material), rep-
resents grid points where model 5 is selected and
indicates where it is possible to differentiate between
the two internal motions. From a dynamics perspec-
tive the final model-free parameter values are of more
interest than the knowledge of which model was ac-
tually selected. The only information available from
the model type is the number of internal motions yet
the selection of a model describing a single motion
does not necessarily mean that two internal motions
are absent (Table 2, Figure 2). These surfaces demon-
strate the accuracy and quality of the final dynamic
picture uncovered using the various model selection
techniques independent of which model was selected.

Discussion

From the results, two important flaws in the current
model selection technique (Mandel et al., 1995) used
in model-free analysis are evident. These are, not se-
lecting a model when one should be selected, and
under-fitting. For the current technique approximately
13% of the Rex grids (Tables 1, 3, and 5) and approx-
imately 9% of the Double Motion grids (Tables 2, 4,
and 6) have no model selected. These percentages are
independent of field strength or set size thereby vali-
dating the extension of the technique for multiple field
strength data (n > 3) by the addition of chi-squared
and F-tests for models 4 and 5 (supplementary ma-
terial). A few of the grid points for which no model
is selected are clustered in a region in the model-free
space covered by the Rex grids where τe values are in
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Table 1. Percentages of model-free models selected for the five randomised Rex grids (double field
strength data) consisting of the three dimensions {S2, τe, Rex }

Selection method No model Model 1 Model 2 Model 3 Model 4 Model 5

AIC 0 8.6 13.5 27.4 49.1 1.5

AICc 0 14.5 19.0 32.9 32.6 1.0

BIC 0 8.0 13.2 27.0 50.2 1.6

Bootstrap 0 5.1 9.0 24.0 57.4 4.6

Cross-validation 0 7.9 11.3 27.6 47.9 5.3

Old technique 18.9 4.8 9.4 22.7 43.9 0.3

Current technique 13.3 16.2 13.7 25.0 31.8 0.1

Realised discrepancy 0 4.6 10.4 26.3 56.3 2.5

Expected discrepancy 0 6.6 10.8 27.7 52.3 2.6

Table 2. Percentages of model-free models selected for the five randomised Double Motion grids
(double field strength data) consisting of the three dimensions {S2

f
, S2

s , τs}

Selection method No model Model 1 Model 2 Model 3 Model 4 Model 5

AIC 0.4 30.9 33.7 2.3 2.7 30.0

AICc 0.4 42.1 36.0 0.4 0.2 21.0

BIC 0.4 29.6 33.8 2.6 3.1 30.5

Bootstrap 0 24.1 24.7 3.6 6.8 40.8

Cross-validation 0 29.9 22.2 3.0 6.7 38.1

Old technique 21.5 16.0 31.2 3.8 7.6 19.9

Current technique 8.7 43.2 27.1 0.4 0.7 19.9

Realised discrepancy 0 27.8 35.7 1.6 2.3 32.6

Expected discrepancy 0 33.7 27.6 0.0 0.7 37.9

the range of 128 to 512 picoseconds (supplementary
material). The origin of this problem was traced to
an apparent bug in the Modelfree program where in
certain circumstances the Levenberg-Marquardt min-
imisation failed to optimise the parameter values ob-
tained from the initial grid search. This problem is
currently being investigated (A.G. Palmer, personal
communication). Apart from this region the majority
of affected points appear to be randomly distributed
across the model-free space and are most likely the
result of randomly large errors in the affected sample
sets. In the older technique (Farrow et al., 1994) the
problem of not selecting a model is more severe with
approximately 20% of the double field strength grids
(Tables 1 and 2) and approximately 15% of the single
field strength grids with no model selected (Tables 3–6
in the supplementary material).

The second major problem of the current model se-
lection technique (Mandel et al., 1995) is under-fitting.
This is revealed by comparison with the expected dis-

crepancy and AICc model selection. Theoretically the
expected discrepancy is the perfect balance between
bias and variance, meaning that neither under nor
over-fitting occurs, and therefore the percentages of
models selected are the ideal situation. In compari-
son, the small sample size corrected AIC or AICc uses
the property of under-fitting to select the best model,
where the additional term in the AICc formula induces
under-fitting as a compensation for the size of the sam-
ple. From Tables 1 and 2 the percentages of models
selected for the current technique are similar to AICc
but are far from the balance of the expected discrep-
ancy demonstrating the under-fitting. In model-free
analysis, under-fitting is manifested as the selection
of a model which is a parametric restriction of the
best model. The model-free results incorporate less
experimental noise but this artificially underestimates
parameter uncertainty (Andrec et al., 1999). In addi-
tion there is an increase in bias which skews the final
results. When the underlying motion is best described
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Figure 1. S2 difference surfaces for the first randomised Rex grids, where the difference is between the final fitted and selected parameter value
and the true value specified in the creation of the grids. The S2 dimension of the grid has been split into a series of graphs, with only a single
member of the series depicted. Black spheres represent grid points where no model has been selected, in these cases the difference is set to zero
to visualise the fine distinctions between the techniques. The model selection results for the double field strength grid when S2 = 0.001 are:
(a) AIC model selection (Akaike, 1973); (b) current model-free model selection (Mandel et al., 1995); (c) an older model-free model selection
technique (Farrow et al., 1994). These results demonstrate a flaw of the current and the older model-free model selection techniques whereby
a high proportion of the grid points have no model selected. The model selection results for the double field strength grids when S2 = 0.970
are: (d) AIC model selection; (e) current model selection. These reveal the second flaw of the current model-free model selection, under-fitting,
which results in the overestimation of S2 and underestimation of τe and Rex . The overestimation of S2 is evident as the lighter elevated surface
in (e); (f) AIC model selection when S2 = 0.970 for the 600 MHz grid demonstrating the increase in noise of the model-free parameters
compared to the double field strength data in (d).

by model 4 but either models 1, 2, or 3 are selected,
the result is that S2 is overestimated and τe and/or Rex

are underestimated. An example of this is the lighter
elevated S2 difference surface in Figure 1e when S2 =
0.970. A numerical example of the potential S2 over-
estimation is for the grid point {S2 = 0.698, τe =
64, Rex = 12.151} of the first randomised double field
strength Rex grid, where the fitted parameter values are
model 1 {S2 = 0.913}, model 2 {S2 = 0.877, τe =
88.74}, model 3 {S2 = 0.770, Rex = 10.885}, and
model 4 {S2 = 0.697, τe = 67.91, Rex = 11.952}.
As the parameter number decreases the value of S2

generally increases demonstrating how under-fitting
causes overestimation of S2. τe and Rex are under-
estimated, their value being zero, because of their

exclusion from the final model. When the underly-
ing motion is best described by two internal motions
(model 5) under-fitting results in the selection of mod-
els 1 or 2 (Tables 2, 4, and 6, Figure 2) hiding one of
the two motions by merging the two order parameters
into the single parameter S2 = S2

f S2
s . This occurs

naturally when the two timescales are close to each
other but is exaggerated by under-fitting. Over-fitting
results in the selection of an overly complex model in
which one of the model-free parameters is insignifi-
cant, its existence being blurred by noise. This occurs
where order parameters are close to one and correla-
tion times and chemical exchange are close to zero.
The exclusion of the parameter would be beneficial to
the final result by reducing the variance, thereby in-
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creasing the stability and precision of the final model.
More experimental noise is reflected in the selected
model which randomly increases the error associated
with the final model-free parameter estimates. Due
to the randomness of this effect the consequences of
over-fitting are far less detrimental to the final results
than the consequences of under-fitting, even if single
field strength data is all that is available. Because the
current technique (Mandel et al., 1995) under-fits, it
breaks the principle of parsimony distorting the results
and causing the protein to appear much more rigid than
it actually is.

When the expected discrepancy is used for model
selection, the proportion of grid points with model 5
selected in the double field strength Double Motion
grids is much higher (38%) than can be achieved using
any of the other model selection techniques (Table 2).
For the criteria based model selection techniques the
best that can be realistically achieved is 30%. The
bootstrap and cross-validation techniques do have pro-
portions similar to the expected discrepancy but this is
due to the over-fitting of the techniques and these grid
points tend to be randomly placed in the region of the
Double Motion grids where the correlation time is low
and the two internal motions cannot be separated (Fig-
ure 3c). The fitted and selected model-free results for
these points are far from the true parameter values. An
example in the first randomised double field strength
Double Motion grid using bootstrap model selection is
where the true values of the model-free parameters are
{S2

f = 0.931, S2
s = 0.582, τs = 16} and the fitted and

selected values are {S2
f = 0.580, S2

s = 0.928, τs =
298.7}. As the true correlation time is located below
the τs cut-off, defined as the lowest correlation time
where the two motions can be discriminated, the best
result would be the selection of either model 1 or 2
but because model 5 is selected the corresponding per-
centage is artificially high. Often in these cases the
order parameters are reversed and the correlation time
overestimated, the result being the selection of an arti-
ficial motion on a time scale much slower than the true
model where in reality no such motions exist. There
are two explanations why the selection of model 5
by the criteria based methods can only reach 30%,
while the expected discrepancy reaches 38%. Firstly,
a proportion of the extra 8% is due to the expected
discrepancy incorrectly selecting model 5 because of
the bug in the Modelfree program, as described previ-
ously. There is a trend for these points to be clustered
in a band with the same τs value (Figure 3a) located

below the τs cut-off with its exact position depen-
dent on the value of S2

s . Secondly, the τs cut-off
appears to move to higher correlation times for noisy
data. This is reflected in the differences in percent-
ages between the expected and realised discrepancies
which are calculated using noise-free and noisy data
respectively. Since no model selection technique us-
ing noisy relaxation data can replicate results of the
expected discrepancy due to the τs cut-off change and
the effects of the program bug, the model selection
techniques were compared to the realised rather than
expected discrepancy for the Double Motion grids.

Due to the skewing of results caused by under-
fitting, AICc model selection is not recommended
for model-free analysis. Another reason for not using
AICc is because model selection actually fails for sin-
gle field strength data (Tables 3–6). This is because
if data sets with n ≤ 4 are used together with AICc
model selection the denominator of the additional term
becomes zero for certain models causing the value
of the criterion to be infinite. Due to the extremely
large proportion of the grids with no model selected
(Figure 1c), as well as model selection inconsistencies
between the Rex and Double Motion grids, the older
method used for model-free analysis (Farrow et al.,
1994) is not recommended either. By comparison of
the Rex grid percentages to the expected discrepancy
(Tables 1, 3, and 5), the results are not too far from
the ideal situation with neither under nor over-fitting
occurring. The percentages are lower for all mod-
els due to the high proportion of the grids with no
model selected. For the Double Motion grids, compar-
ison of the older technique to the realised discrepancy
(Tables 2, 4, and 6) reveals a different pattern of re-
sults, under-fitting occurring for models 2 and 5 and
over-fitting occurring for models 1, 3, and 4. These
inconsistencies arise because of fundamental flaws in
the selection technique.

Both the bootstrap and cross-validation model
selection perform relatively well. The percentages
are similar to the expected discrepancy (all tables),
the only difference being slight over-fitting. Cross-
validation is not represented in Tables 3–6 in the sup-
plementary material because the technique can only
work when n > 3. The slight over-fitting of the boot-
strap method is evident in the Rex grids where the
percentages for models 1 to 3 are lower than the ex-
pected discrepancy while models 4 and 5 are higher.
In the Double Motion grids models 1 and 2 are lower
than the realised discrepancy and models 3 to 5 are
higher. The results of the cross-validation model se-
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Figure 2. S2
s difference surfaces for the first randomised double field strength Double Motion grids. The S2

s dimension of the grid has been
split into a series of graphs and only results for S2

s = 0.001 are shown. Black spheres represent grid points where no model has been selected,
white spheres represent grid points where model 5 has been selected. When no model is selected the S2

s value is assumed to be one. The plots
represent: (a) Model selection using the expected discrepancy (Zucchini, 2000); (b) AIC model selection (Akaike, 1973); (c) current model-free
model selection (Mandel et al., 1995). These surfaces demonstrate where the two internal motions can be separated. The expected discrepancy
neither under nor over-fits, therefore this is the ideal result. Because the expected discrepancy cannot be calculated for real NMR data this figure
demonstrates the improvement in results using AIC compared to the current technique.

Figure 3. τs difference surfaces for the first randomised Double Motion grids, where the S2
s dimension of the grid has been split into a series of

graphs. White spheres represent grid points where model 5 has been selected. The model selection results for the double field strength grid when
S2
s = 0.582 are: (a) Model selection using the expected discrepancy (Zucchini, 2000); (b) AIC model selection (Akaike, 1973); (c) bootstrap

model selection (Zucchini, 2000). These three surfaces demonstrate why both the expected discrepancy and bootstrap model selection have
higher percentages for model 5 in the Double Motion grids compared to the other techniques. The additional percentages are artificial, being
placed below the τs cut-off which is located at approximately 128 ps in this case, and these models have incorrect parameter estimates. The
model selection results for the 600 MHz grid when S2

s = 0.873 are: (d) The expected discrepancy; (e) AIC model selection; (f) BIC model
selection (Schwarz, 1978). The BIC model 5 percentages are higher than AIC for the 600 MHz Double Motion grids. These surfaces show this
is artificial rather than truly reflecting the percentages of the expected discrepancy.
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lection are different. For the Rex grids the percentages
for models 1–3 are almost the same as the expected
discrepancy while model 4 is lower and model 5 is
higher. For the Double Motion grids, model 1 is simi-
lar to the realised discrepancy while model 2 is lower
and models 3–5 are higher. The bootstrap technique
is known to over-fit (Zucchini, 2000) but the reason
for the distinctive cross-validation results is unclear,
especially since these results are not what would be
expected from normal over-fitting. The result is proba-
bly due to either the Modelfree bug as discussed above
or due to artefacts of the technique. Because over-
fitting results in the selection of artificial motions in
the Double Motion grids, as discussed above, boot-
strap and cross-validation model selection techniques
are not recommended.

The best performing techniques are AIC and BIC
model selection with percentages closest to the ex-
pected discrepancy in Tables 1, 3, and 5 and closest
to the realised discrepancy in Tables 2, 4, and 6.
Because of the similarity in percentages, AIC and
BIC therefore neither under nor over-fit. By avoid-
ing under-fitting, the final results do not overestimate
precision and are free of bias which would otherwise
respectively cause error estimates to be too small and
order parameters to be overestimated and correlation
times and chemical exchange to be underestimated.
By avoiding over-fitting, the final results do not un-
derestimate precision, which would cause excessive
parameter uncertainty and model instability, and are
free of artificial motions. The validity of these per-
centages is confirmed by visual inspection of the full
difference surfaces. For double field strength data the
two techniques perform almost perfectly with the av-
erage difference value centred at zero (Figures 1–3
and supplementary material). After accounting for the
experimental noise, visible as random perturbations
throughout the plots, the AIC and BIC surfaces are
free of distortions due to model selection. No grid
points have difference values visible above the noise
with the exception of two regions which are due to
minimisation artefacts rather than problems associated
with the selection technique. These regions, which are
explained below, are therefore independent of model
selection and visible throughout all surfaces. AIC and
BIC model selection perform almost identically for
double field strength data but, when the results for the
single field strength grids are studied, AIC actually
performs better than BIC. For the Rex grids the AIC
percentages are similar to the expected discrepancy
while the BIC percentages are closer to the realised

discrepancy. When both single field strength Dou-
ble Motion grids are studied the performance of the
two techniques varies. BIC appears to select model 5
more often but this is abnormal as these grid points
are randomly placed below the τs cut-off resulting in
approximately 4% of all grid points displaying arti-
ficially slow motions (Tables 4 and 6, and Figure 3f).
AIC also suffers from this problem although much less
frequently with around 0.2% of grid points affected.
BIC also has the disadvantage of selecting quite a high
percentage of models 3 and 4. Therefore, because of
the almost perfect percentages and surfaces for all data
studied in this analysis, AIC is the recommended tech-
nique to use in combination with any type of relaxation
data set.

Two regions in the difference surfaces for all model
selection techniques stand out from the noise and are
caused by minimisation problems rather model se-
lection artefacts. The first is in the correlation time
surfaces for both the Rex and Double Motion grids
when the true internal correlation time approaches
the global rotational correlation time (Figure 3 and
supplementary material). Model-free fitting fails in
finding the correct parameter values and in most cases
the correlation time dimension of the model-free space
never converges with the final value either stuck at
the lower or upper bounds. Because the value of the
correlation time cannot be resolved, the estimates of
the S2 and Rex parameters are distorted yet are still
close to their true values (Figures 1 and 2). The prob-
lem increases in severity as S2 values approach one
and is currently unavoidable. The second region is in
the Rex grid where correlation times are around 128 to
512 ps and is due to the bug in the Modelfree program
discussed previously.

Both the size and the highest field strength of the
data set make a difference to the final model-free re-
sults. One of the major advantages in the collection
of six data points is the reduction of the noise levels
of the final model-free parameters (Figures 1d, 1f),
thereby increasing the accuracy of the final results. By
comparing AIC model selection for the double field
strength grids with the single field strength grids (all
tables), the proportion of models 4 and 5 for both the
Rex and Double Motion grids is higher for both the
double field strength and 600 MHz grids, than for the
500 MHz grids. Therefore from these results, the ex-
traction of more complicated motions is dependant on
the strength of the highest magnetic field that data was
collected at rather than the size of the relaxation data
set. The reason for this may be due to the reduction of
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experimental noise as field strength increases, or may
be due to a property of the relaxation and model-free
equations. Further study is required to validate and
explain this result.

In reality the underlying dynamics of the NH bond
vector is far more complex than could ever be mod-
elled by model-free or any other theory which uses
limited relaxation data. This complexity is evident
when the information content of model-free analyses
is compared with MD simulations. Therefore trying
to find the truth, the correct model, which is defined
as the complete description of the dynamics, is ex-
perimentally impossible. The selected model must be
considered as an approximation to the truth and in us-
ing the frequentist methods this is the model which
best describes the true data set (Rtrue). This does
not mean that the information extracted is not physi-
cally meaningful. Without prior knowledge of the true
underlying dynamics, it is not possible to determine
the degree of approximation. However the quality of
the model can be measured using the chi-squared sta-
tistic and criterion values. The chi-squared statistic
indicates how close the model is to the experimental
data (R) and is inversely proportional to the likelihood
of the model (Edwards, 1972). The comparison of
the relative criterion values between the contending
models is related to the concept of model selection
uncertainty (Linhart and Zucchini, 1986; Jin et al.,
1998) where, if two models have nearly identical AIC
values they can be considered to describe the true data
equally well. Caution must then be taken in reaching a
conclusion. If the models are nested, in most cases the
additional parameter is on the border of being insignif-
icant. If the two model-free models are non-nested this
may be an indication that a more complex model is
required, one which contains the parameters of both
models, although this is only possible provided the
number of parameters is less than or equal to the num-
ber of data points in the relaxation data set. To reach
valid conclusions, careful analysis of AIC values, chi-
squared statistics, and model-free parameter values is
required.

The fundamental aim of the current technique
(Mandel et al., 1995) is to find the correct descrip-
tion of the underlying motion from a set of contending
models, and if the true model is not within that set, no
model will be selected. Yet in this analysis, the current
model selection is shown to not select a model when
the true model is actually within the set. The black
and white concept of classifying a model as either
correct or incorrect is counter intuitive to the philos-

ophy of model selection due to the shades of grey
introduced by the underlying complexity of the true
model, the parametric restrictions of nested models,
and the randomisation of data by experimental noise.
For the frequentist and Bayesian model selection tech-
niques the aim is not to find the correct description
of the motion, but to select the model which best de-
scribes the data. This is why these techniques always
select a model. The one special case where the fre-
quentist and Bayesian methods cannot select a model
is when the chi-squared value for all models is infinite.
This occurs in certain rare cases in the Double Motion
grids when both the S2

f and S2
s values are 0.001 and

τs values are low and is due to the artificial trunca-
tion of a value in the error set to zero causing infinite
chi-squared values (Tables 2, 4, and 6; Figure 2b).
Although in this comparison the truth is very simple,
being perfect model-free motions, the frequentist and
Bayesian methods were designed with the assumption
that the underlying model may never be fully reflected
in the data, therefore their application to real NMR
relaxation data is completely justifiable.

For model-free analysis using the current tech-
nique (Mandel et al., 1995) Monte Carlo simulations
for each model are required to generate the appropriate
chi-squared and F-distributions for hypothesis testing.
An additional advantage of using AIC model selec-
tion is that these simulations are no longer necessary.
A single model-free minimisation and resultant chi-
squared statistic per nucleus is all that is needed. The
parameter error estimates can be determined follow-
ing model selection in a final minimisation run with
Monte Carlo simulations. Assuming that the simula-
tions would only be used for the five model-free model
runs and no final optimisations would be carried out,
the use of AIC would only require a fifth of the com-
putation time of the current technique (Mandel et al.,
1995). If, in addition, the diffusion tensor parame-
ters are optimised using a final run and are followed
by multiple iterations of the fitting, model selection,
and final optimisation, all of this can be accomplished
without the use of Monte Carlo simulations. As well
as speeding up model-free analysis by decreasing the
computation time, the use of AIC would also simplify
analysis by removing the need for multiple statistical
tests and the adherence to a complex flow diagram
for model selection. All that is needed for AIC is the
calculation and comparison of five criteria using the
simple formula χ2 + 2k. Because AIC is able to com-
pare non-nested models, the model-free models can be
directly compared to other non model-free motional
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models as long as the dependence of model-free para-
meters on the global rotational diffusion tensor is not
overlooked. This makes it the perfect tool for compar-
ison of the model-free theory with alternative theories
such as the Slowly Relaxing Local Structure (SRLS)
(Tugarinov et al., 2001). In addition, as the SRLS
theory contains multiple models which are discrimi-
nated using hypothesis testing, based on the current
model-free technique, the use of AIC for SRLS model
selection will increase the accuracy of these results
as well. AIC can easily be extended to other relax-
ation applications including the decision of whether an
isotropic, an axially symmetric, or a fully anisotropic
diffusion tensor best describes the global tumbling of
the protein. In this case the AIC criterion is identi-
cal to equation 16 where the chi-squared statistic is
simply the sum of the chi-squared values over all re-
laxation sets and k is the sum of the number of global
rotational diffusion parameters and the total number
of model-free parameters describing the system. A
possible consequence of this application may be the
effective discrimination between chemical exchange
effects and anisotropic tumbling (Osborne and Wright,
2001; Pawley et al., 2001).

Conclusions

Two major flaws of the current model selection tech-
nique (Mandel et al., 1995), which is almost uni-
versally used in the model-free analysis of protein
dynamics, have been identified by the study of syn-
thetic data. These are, not selecting a model when
one ought to be selected, and under-fitting. The con-
sequence of not selecting a model is that a proportion
of the protein backbone will not be described us-
ing model-free parameters. The consequences of the
under-fitting are that the final model-free results are
skewed with S2 overestimated and τe and Rex under-
estimated, and if two internal motions exist these are
not separated. The principle of parsimony states that
the simplest model which fits well should be selected
and since under-fitting results in a model which is too
simple, the current technique (Mandel et al., 1995)
breaks this principle. As a result the protein falsely
appears more rigid than it really is.

The performance of the current model-free model
selection technique was compared to an older model-
free technique (Farrow et al., 1994), to various fre-
quentist model selection techniques including AIC,
AICc, bootstrap methods, cross-validation, the re-

alised and expected discrepancies, and to the Bayesian
method BIC. Synthetic noisy relaxation data cover-
ing all current model-free motions was used for the
comparison and it is concluded that the most accurate
model-free results for experimental relaxation data can
be realised using AIC model selection. AIC is the best
implementation of Occam’s razor and the principle of
parsimony. Its use will increase the accuracy, speed,
and simplicity of model-free analysis.
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